Это расстояние равно половине длины боковой стороны треугольника АВС.
В самом деле, высота делит ᐃ АВС на два прямоугольных треугольника:
⊿АСН с гипотенузой АС и ⊿ВСН с гипотенузой ВС.
Центр окружности, описанной около прямоугольного треугольника, лежит на середине его гипотенузы.
Соединив центры описанных окружностей - середину О₁ гипотенузы ВС и середину О₂ гипотенузы АС, - получим среднюю линию треугольника АВС, проведенную параллельно стороне АВ.
Средняя линия треугольника равна половине стороны, которой она параллельна.
О₁О₂=АВ:2=101:2=50,5