Проекция бокового ребра на плоскость основания - это половина диагонали квадрата в основании пирамиды.
Находим половину диагонали: АО = 6√2/2 = 3√2 см.
Тогда косинус угла α наклона бокового ребра к плоскости основания равен:
cos α = (3√2)/(√50) = 3√(1/25) = 3/5.
Находим апофему А:
А = √((√50)²-(6/2)²) = √(50-9) = √41.
Периметр Р основания равен: Р = 4*6 = 24 см.
Отсюда площадь Sбок боковой поверхности пирамиды равна:
Sбок = (1/2)Р*А = (1/2)*24*√41 = 12√41 см².