От двух кусков сплавов (с различным содержанием свинца) массой 12 и 36 килограмм отрезали...

0 голосов
111 просмотров

От двух кусков сплавов (с различным содержанием свинца) массой 12 и 36 килограмм отрезали по куску равной массы. Каждый из отрезанных кусков сплавили с остатком другого куска, после чего процентное содержание свинца в обоих сплавах стало одинаковым. Сколько килограмм было в каждом из отрезанных кусков?


Математика (22 баллов) | 111 просмотров
Дан 1 ответ
0 голосов

Возьмем кусок м=12 за А,а м=36 за В. У-% содержание золота в куске А. Х-% содержание золота в куске В.
Куски золота после сплава:
Кусок А: 12-n c % у и кусок n  c % х. Куске В: 36-n с % х и кусок n с %у.
Найдем массу золота в куске А:
(12-n)у/100+nx/100=mA
в куске В:
(36-n)х/100+nу/100=mB

Мы знаем,что после сплава %-ное содержание золота в кусках одинаковое-->
mA*100/A=%-ое содержание золота в куске А после сплава.Также делаем и для В.Приравниваем их,сокращаем 100 и подставляем значения. После этого у Вас получится легкое уравнение,которые решите и получите вес отрезанного куска.
 

(30 баллов)