Меньшая боковая сторона прямоугольной трапеции равна 9 см,а острый угол 45 градусов....

0 голосов
43 просмотров

Меньшая боковая сторона прямоугольной трапеции равна 9 см,а острый угол 45 градусов. найти площадь трапеции.


Геометрия (65 баллов) | 43 просмотров
Дан 1 ответ
0 голосов

Пусть трапеция имеет вершины АВСD. Угол D=45(гр.) ну он тип угол при основании.
По свойству прямоугольной трапеции наименьшая боковая сторона - это сторона при прямом угле. Т.е. АВ=9. То есть и высота в трапеции равна 9.
Строим высоту СН=9( только что писала почему равную 9). И рассматриваем треугольник СDH: угол CHD - прямой, угол D=45(гр.), следовательно и угол HCD=45(гр.)(180-90-45=45)
Значит, треугольник СНD - равнобедренный и СН=НD=9.
Найдем, чему равна боковая сторона СD. По теореме Пифагора: CD^2=81+81=162==> CD= 9 корней из 18 ( не могу вставить формулу: выглядит примерно так 9\|18'
Известно, что сумма боковых сторон трапеции равна сумме оснований: тогда сумма оснований равна ==> 9+(9\|18':2)+(9\|18':2) (НD+AH+BC)
А площадь трапеции равна: 1/2 суммы оснований умноженная на высоту, т.е. (НD+AH+BC)*CH= 1/2(9+9\18')*9=4,5*(9+9\|18')=4,5*9+4,5*9\|18'=40,5+40,5\|18'
Может это как то преобразуется, но по-моему решается так..;)

(264 баллов)
0

спасибо !!!))

0

было бы правильно, всегда пожалуйста, удачи;)