Окружностьпроходит через середины гипотенузы АВ и катета ВС прямоугольного треугольника...

0 голосов
53 просмотров

Окружностьпроходит через середины гипотенузы АВ и катета ВС прямоугольного треугольника АВС касается катета АС. В каком отнощении точка касания делит катет АС?


Геометрия (38.0k баллов) | 53 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть точка D -  середина гипотенузы АВ, а точка Е - середина катета ВС.

Отрезок DE - средняя линия треугольника, поэтому он параллелен катету АС и равен его половине. Центр окружности лежит на серединном перпендикуляре КМ к отрезку DE, поэтому КЕ = DE / 2 = AC / 4.

Таким образом, точка касания делит катет АС в отношении  1 : 3

(54.9k баллов)