Дана функция: f(x)=(x-k)/(x-3), k не равно 3. Касательная к графику в точке, где х=k...

0 голосов
19 просмотров

Дана функция: f(x)=(x-k)/(x-3), k не равно 3. Касательная к графику в точке, где х=k параллельна касательной в точке, где х=5. При каких значениях k
функция f(x) будет убывать во всех областях определения?
Ответ - при k менее 3, но как дойти к этому решению, я пока не понимаю. Помогите, пожалуйста!


Алгебра (24 баллов) | 19 просмотров
0

f(x) =(x-k)/(x-3)=(x-3+3-k)/(x-3)=1+(3-k)/(x-3) функция f(x) будет убывать при (3-k)>0 значит при k<3

0

f(x) =(x-k)/(x-3)=(x-3+3-k)/(x-3)=1+(3-k)/(x-3) - гипербола, смещенная на 1 вверх и на 3 вправокасательная в точке, где х=k параллельна касательной в точке, где х=55 отстоит от 3 на 2 справо1 отстоит от 3 на 2 слева, значит к=1

Дан 1 ответ
0 голосов
Правильный ответ

Находим производную
f`(x)=( \frac{x-k}{x-3})`= \frac{(x-k)`(x-3)-(x-k)(x-3)`}{(x-3) ^{2} }= \frac{(x-3)-(x-k)}{(x-3) ^{2} }= \frac{x-3-x+k}{(x-3) ^{2} }= \\ \\ = \frac{k-3}{(x-3) ^{2} }

Угловой коэффициент касательной в точке равен значению производной функции в этой точке.

f`(5)= \frac{k-3}{(5-3) ^{2} }= \frac{k-3}{4}

f`(k)= \frac{k-3}{(k-3) ^{2} }= \frac{1}{k-3}

Если прямые ( касательные) параллельны, то их угловые коэффициенты равны.

Составляем уравнение
\frac{k-3}{4}= \frac{1}{k-3} \\ \\ k \neq 3 \\ \\ (k-3) ^{2}=4

k-3=2          или           k-3 = -2
k=5              или          k=1

в точках  х=k
k=5  или  k=1
точка х=5 дана

Ответ.  k=1

(414k баллов)