Треугольник MTS - вписанный в окружность диаметром 10 см. Причем, он еще и прямоугольный, так как именно у прямоугольных треугольников центр окружности лежит на середине гипотенузы (MO=OS=5 см).
Теперь мы рассмотрим треугольник МОТ. У него МО = 5 см, и угол МОТ = 120 градусов. Следовательно, по теореме синусов мы можем найти сторону МТ.
МТ/(sin MOT) = 2R
MT/
= 2*5
MT = 10*
=
Для вычисления площади нам нужна третья сторона. Треугольник MTS - прямоугольный, а значит, мы можем применить теорему Пифагора:
х = 5.
Теперь мы можем найти его площадь по половине произведения его катетов.
2) Расстояние от точки до прямой - перпендикуляр, опущенный из этой точки на прямую.
Точка из т.Т на прямой MS допустим, называется, К.
Итак, мы имеем прямоугольный треугольник МТК.
Но перед тем, как к нему переходить, рассмотрим другой треугольник, треугольник OTS. Он равносторонний (OS=5(радиус окружности), TS=5(мы нашли по теореме Пифагора), OT = 5 (радиус окружности)). А значит, угол OST = 60 градусов.
Угол М теперь находится просто: 180 - 90(это угол MTS) - 60 (это угол OST) = 30 градусов.
Вернемся к треугольнику MTK, в котором MT =
и угол M = 30 градусов.
А катет, лежащий против угла в 30 градусов равен половине гипотенузы.
Следовательно, искомое расстояние от точки Т до прямой MS = ![\frac{5 \sqrt{3} }{2} = 2.5 \sqrt{3} \frac{5 \sqrt{3} }{2} = 2.5 \sqrt{3}](https://tex.z-dn.net/?f=+%5Cfrac%7B5+%5Csqrt%7B3%7D+%7D%7B2%7D+%3D+2.5+%5Csqrt%7B3%7D+)