Основание прямой призмы – равнобочная трапеция, одно из оснований которой в два раза больше другого. Непараллельные боковые грани призмы – квадраты. Высота призмы равна 6 см. Площадь боковой поверхности призмы равна 144 см . Вычислите объем призмы.
ABCDA₁B₁C₁D₁_прямая призма . Допустим основание трапеция ABCD ;AB =CD = AA₁ =6 см ;AD | | BC ; AD=2x ; BC =x ; Sбок =144 см². --------------------------------- V =S(ABCD)*AA₁--> ? Sбок =144 см² ; Sбок =(AB+BC+ CD +DA)*AA₁; (6+x+6+2x ) *6 =144 ⇒x=4. h =√((AB² - ((AD-BC)/2)²) =√((6² -((8-4)/2)²) =√(36 -4) =4√2 (см). S (ABCD)= (AD+BC)/2 * h =(8+4)/2*4√2 =24√2 (см²); V = S(ABCD)*AA₁ = 24√2 см²*6 см= 144√2 см³. ответ : 144√2 см³