\frac{1}{2}" alt="|log_{3}x|>\frac{1}{2}" align="absmiddle" class="latex-formula"> ОДЗ: x>0
\frac{1}{2}" alt="log_{3}x>\frac{1}{2}" align="absmiddle" class="latex-formula"> и ![log_{3}x<-\frac{1}{2} log_{3}x<-\frac{1}{2}](https://tex.z-dn.net/?f=log_%7B3%7Dx%3C-%5Cfrac%7B1%7D%7B2%7D)
3^\frac{1}{2}" alt="x>3^\frac{1}{2}" align="absmiddle" class="latex-formula"> ![x<3^{-\frac{1}{2}} x<3^{-\frac{1}{2}}](https://tex.z-dn.net/?f=x%3C3%5E%7B-%5Cfrac%7B1%7D%7B2%7D%7D)
\sqrt{3}" alt="x>\sqrt{3}" align="absmiddle" class="latex-formula"> ![x<\frac{1}{\sqrt{3}} x<\frac{1}{\sqrt{3}}](https://tex.z-dn.net/?f=x%3C%5Cfrac%7B1%7D%7B%5Csqrt%7B3%7D%7D)
![x<\frac{\sqrt{3}}{3} x<\frac{\sqrt{3}}{3}](https://tex.z-dn.net/?f=x%3C%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B3%7D)
Учитывая ОДЗ получим ответ: ![x\in(0;\frac{\sqrt{3}}{3})\cup(\sqrt{3};+\infty) x\in(0;\frac{\sqrt{3}}{3})\cup(\sqrt{3};+\infty)](https://tex.z-dn.net/?f=x%5Cin%280%3B%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B3%7D%29%5Ccup%28%5Csqrt%7B3%7D%3B%2B%5Cinfty%29)