Синус внешнего угла при вершине равнобедренного треугольника равен четыре пятых . Найдите...

0 голосов
58 просмотров

Синус внешнего угла при вершине равнобедренного треугольника равен четыре пятых . Найдите радиус описанной около этого треугольника окружности, если его основание равно а.


Математика (184 баллов) | 58 просмотров
Дан 1 ответ
0 голосов

Пробуем без чертежа.
Исходя из равенства sin(180°-α) = sin α. Делаем вывод, что и синус внутреннего угла при вершине равнобедренного треугольника также равен 4/5.
По формуле-следствию из теоремы синусов получим:
\dfrac{a}{sin \alpha }=2R\ =\ \textgreater \ R=\dfrac{a}{2*sin \alpha }=\dfrac{a}{2* \frac{4}{5} }=\dfrac{5a}{8 }
Ответ: R=\frac{5a}{8 }

(25.2k баллов)