Получатся два прямоугольных треугольника, в каждом из которых данные отрезки d и m будут являться гипотенузами, их проекции d₁ и m₁ катетами, а расстояние между параллельными плоскостями h катет
По условию d + m = 40
Пусть
х - длина проекции d₁
(40 - m) - длина проекции m₁
Применяем теорему Пифагора для первого треугольника
d² - d₁² = h²
и для второго
m² - m₁² = h²
Правые части равны, приравняв левые части, получим уравнение
13² - x² = 37² - (40 - x)²
169 - x² = 1369 - 1600 + 80x - x²
80x = 400
x = 400 : 80
х = 5 см - длина первой проекции
40 - 5 = 35 см - длина второй проекции
Ищем разность
35 - 5 = 30 см
Ответ: 30 см