Трапеция АВСД: боковые стороны АВ=СД, основания АД=5, ВС=4
Диагонали равнобедренной трапеции равны АС=ВД - они являются биссектрисами.
<ДАС=<ВАС<br>.При пересечении двух параллельных прямых АД и ВС секущей АС накрест лежащие углы равны <ДАС=<ВСА.<br>Значит ΔАВС - равнобедренный (<ВСА=<ВАС) и стороны АВ=ВС=4.<br>Проведем в трапеции высоту СН на основание АД, которая делит его на два отрезка, один из которых равен полусумме оснований АН=(АД+ВС)/2=4,5, а другой — полуразности оснований ДН=(АД-ВС)/2=0,5.
Из ΔСНД найдем СН:
СН²=СД²-ДН²=4²-0,5²=15,75
Из ΔСНА найдем АС:
АС²=АН²+СН²=4,5²+15,75=36
АС=6
Ответ: 6