** сколько сумма 2^2+4^2+6^2+. . . +100^2 больше суммы 1^2+3^2+5^2+. . . +99^2? Решите...

0 голосов
35 просмотров

На сколько сумма 2^2+4^2+6^2+. . . +100^2 больше суммы 1^2+3^2+5^2+. . . +99^2? Решите пожалуйста с объяснением.


Математика (588 баллов) | 35 просмотров
Дан 1 ответ
0 голосов

(2^2 + 4^2 + ... + 100^2) - (1^2 + 3^2 + ... + 99^2) = (2^2 - 1^2) + (4^2 - 3^2) + ... + (100^2 - 99^2) = 3 + 7 + 11 + ... + 199.

Это арифметическая прогрессия:

a1 = 3

a2 = 7

.....

an = 199

Вычислим n: разность прогрессии равна k = a2 - a1 = 7 - 3 = 4;

an = a1 + k * (n - 1) = 3 + 4 * (n - 1) = 199

n = 50.

Сумма S = (a1 + a50) / 2 * 50 = (3 + 199) / 2 * 50 = 5050

(24 баллов)