В равностороннем треугольнике abc проведена биссектриса ad.расстояние от точки D до...

0 голосов
82 просмотров

В равностороннем треугольнике abc проведена биссектриса ad.расстояние от точки D до прямой АС =6 см.Найдите расстояние от вершины А до прямой ВС


Математика (12 баллов) | 82 просмотров
Дан 1 ответ
0 голосов

Т.к треугольник равнобедренный то биссектриса также является медианой, а значит все стороны равны 6*2=12 см. следовательно в треуг-ке АDC сторона AC равна 12 см, а сторона DC по условию 6 см. отсюда можно найти расстояние от вершины А до стороны (прямой) ВС, следовательно нужно найти биссектрису AD по теореме Пифагора: AC в кв=AD в кв + DC в кв. выражаем из этого AD: AD=квадратный корень из разности квадратов сторон AC и DC. AD= корень из 12 в кв - 6 в кв = корень из 144 - 36= корень из 108= 2 корня из 27.пусть АС=2а, тогда CD=a , по т Пифагора AD=a√3a=2√3a²√3=6aa√3=6S=0.5*2a*6AD=2√3*√3=6S=0.5a*a√3

(33 баллов)