Отрезок, параллельный основаниям и проходящий через точку пересечения диагоналей, делится последней пополам и равен среднему гармоническому длин оснований трапеции (формула Буракова):
MN=2*ВС*АД/(ВС+АД)
1,6=2ВС*4/(ВС+4)
1,6ВС+6,4=8ВС
ВС=1
Отрезок КЕ, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии:
КЕ=(АД-ВС)/2=(4-1)/2=1,5