Tgx + ctgx = 2 Найти все корни уравнения принадлежащие промежутку [

0 голосов
204 просмотров

Tgx + ctgx = 2
Найти все корни уравнения принадлежащие промежутку [\pi ;3 \pi ]


Алгебра (392 баллов) | 204 просмотров
0

ctgx =1/tgx =>

0

Я уравнение решил tgx=1. Я не могу решить часть б

0

tgx +1/tgx =2; tg^2x+1=2tgx;далее решаем как квадратное уравнение. получается один корень а=1.tgx=1,x=пи/4. корни в промежутке следующие: 5пи/4;9пи/4; пи

0

в части Б необходимо перевести в градусную меру промежуток. т.е. от 180 до 540 градусов. далее считать х при n=1.это будет пи/4+пи=5пи/4. это равно 5*180/4=5*45=225. попадает в наш промежуток . далее при n=2 будет пи/4+8пи=9пи/4. это равно 9*180/4=405. тоже попадает в промежуток

0

Это понял, а почему само число пи попадает?

0

потому что промежуток в квадратных скобках , то есть начало отсчета от 180 градусов

Дан 1 ответ
0 голосов
Правильный ответ

Tgx+1/tgx=2
tgx≠0
tg²x-2tgx+1=0
(tgx-1)²=0
tgx=1
x=π/4+πn
π≤π/4+πn≤3π
1≤1/4+n≤3
1 -1/4≤n≤3-1/4
3/4≤n≤2 3/4
n=1  x=π/4+π=5π/4
n=2    x=π/4+2π=9π/4