Спасите человека, пожалуйста. Задача: найти размеры участка прямоугольной формы, имеющего наибольшую площадь, если его периметр равен 200 м. Хотя бы на мысль натолкнуться бы, а то ничего не понятно, а идет зачет!
P=2(a+b) 200=2(a+b) a+b=100 a=100-b S=a*b (100-b)*b S=100b-b² a>0, b>0 S'(b)=(100b-b²)'=100-2b S'(b)=0 100-2b=0 b=50 S'(b) + - ----------------------------|------------------------------->b 50 S(b) возрас max убыв в точке х=50 функция S(b) принимает наибольшее значение, ⇒ b=50м a=50м квадрат 50Х50 м
Святой ты человек! Спасибо огромное
спасибо, за добрые слова