Найдите 3 cos a (a- альфа) если sin a = - 2 корня из 2/3 a принадлежит от 3пи / 2 до 2пи

0 голосов
463 просмотров

Найдите 3 cos a (a- альфа)
если sin a = - 2 корня из 2/3
a принадлежит от 3пи / 2 до 2пи


Математика (400 баллов) | 463 просмотров
0

Корень из 2/3 = 0,81649.... Если это число умножить на -2, то получим число меньше -1. Но синус любого угла не может быть меньше -1. Синус может принимать значения от -1 до +1. Значит, в условии у Вас ошибка.

0

в сборнике именно так написано, проверила 3 раза.. странно(

0

Может быть имеется ввиду -(2кореньиз2)/3. Тогда решение будет.

0

упс.. да, именно в скобках (2 корня из 2)

Дан 1 ответ
0 голосов
Правильный ответ

Известно, что sin²α+cos²α = 1.  Отсюда cos²α = 1-sin²α. Тогда cosα=√(1-sin²α) = √{1-(-2√2)²/3²} = √(1-8/9) = √1/9 = + - 1/3.
Для заданной области нахождения альфа косинус будет положительным, тогда  3cosα = 3* +1/3 = +1



(9.2k баллов)