7. Двоим друзьям потребовалось вычислить 4^2-3^2. Они заметили, что результат — число 7 — равен сумме оснований квадратов чисел 4 и 3. Проверив свое открытие на числах 10 и 11, друзья установили, что оно подтверждается: 11^2-10^2 = 21 = 11 10. После этого друзья нашли все пары (а; b) натуральных чисел а > b, для которых разность а^2-b^2 равна сумме а+b. Как друзьям удалось найти все такие числа (а; b)?