Пусть О - середина диагонали BD, а BP и DQ - высоты треугольников KMВ и KMD соответственно. Т.к. прямоугольные треугольники OBP и ODQ равны по гипотенузе и острому углу, то BP=DQ. Т.е. площади треугольников KMB и KMD равны (у них общее основание MK и равные высоты BP и DQ). Аналогично, равны площади треугольников KMA и KMC. Итак,