Через точку А ОКРУЖНОСТИ ПРОВЕДЕНЫ ДИАМЕТР АС и две хорды АВ и АD равные радиусы этой...

0 голосов
106 просмотров

Через точку А ОКРУЖНОСТИ ПРОВЕДЕНЫ ДИАМЕТР АС и две хорды АВ и АD равные радиусы этой окружности.Найдите углы четырехугольника АВСD и градусные меры дуг АВ ВС CD AD


Геометрия (12 баллов) | 106 просмотров
Дан 1 ответ
0 голосов

Решение:
∟АВС=∟АDС=90° (как углы, опирающиеся на диаметр АС)
О - центр окружности.
ΔАВО = Δ АОD - равносторонние, каждая сторона равна радиусу.
Значит, все их внутренние углы равны по 60°.
Тогда, ∟ВАD=120°, а ∟ВСD= 180°-120°=60°.
Дуга АВ = ∟АОВ = 60°.
Дуга АD = ∟АОD = 60°.
Дуга СD = ∟СОD = 180°-60°=120° град (как смежные)
Дуга ВС = ВОС = 180°-60°=120° град (как смежные)

(5.0k баллов)