0\\ \sin(3x)+\sin3x-\sqrt3>0\\ 2*\sin(3x)>\sqrt3\\ \sin(3x)>\frac{\sqrt3}{2}\\ \frac{\pi}{3}<3x<\pi-\frac{\pi}{3}\\ \frac{\pi}{3}<3x<\frac{2\pi}{3}\\ \frac{\pi}{9}<x<\frac{2\pi}{9}" alt="\cos(\frac{3\pi}{2}+3x)+\sin3x-\sqrt3>0\\ \sin(3x)+\sin3x-\sqrt3>0\\ 2*\sin(3x)>\sqrt3\\ \sin(3x)>\frac{\sqrt3}{2}\\ \frac{\pi}{3}<3x<\pi-\frac{\pi}{3}\\ \frac{\pi}{3}<3x<\frac{2\pi}{3}\\ \frac{\pi}{9}<x<\frac{2\pi}{9}" align="absmiddle" class="latex-formula">
добавим период в решение 2pi с учетом того что угол 3х, т.е. период 2pi/3