В правильной четырехугольной пирамиде боковая поверхность 14, 76м(квадратных), а полная...

0 голосов
58 просмотров

В правильной четырехугольной пирамиде боковая поверхность 14, 76м(квадратных), а полная поверхность 18м(квадратных). Найдите сторону основы и высоту
пирамиды.


Математика (131 баллов) | 58 просмотров
Дан 1 ответ
0 голосов

Пусть ABCD - квадрат, лежащий в основании пирамиды, S - ее вершина,         Е - середина стороны АВ, а О - проекция вершины пирамиды на плоскость основания.Площадь основания равна разности полной и боковой поверхностей пирамиды. В данном случае она равна  So = Sп - Sб = 18 - 14,76 = 3,24 м²Тогда сторона основания  a = АВ = √3,24 = 1,8 мПлощадь боковой грани  Sбг = Sб / 4 = 14,76 / 4 = 3,69 м²Высота боковой грани  h = SE = 2 * Sбг / a = 2 * 3,69 / 1,8 = 4,1 мТогда по теореме Пифагора из прямоугольного треугольника SOE находим высоту пирамидыН = SO = √(SE²-OE²) = √(h²-(a/2)²) = √(4,1²-0,9²) = √ 16 = 4 м.Жа

(24 баллов)
0

а там же во всех деиствиях метры квадратные, кроме последнего, верно? или нет?

0

боковая поверхность - это ASB?

0

с этим разобралась.