КейтМиделтон блестяще справилась с подсчетом числа различных способов выбрать размеры групп, не забыв учесть тот факт, что группы пронумерованы.
А теперь давай решим задачу.
Предположим, что в первой группе k человек, тогла во второй группе будет 12-k человек, где
. Давай подумаем, сколько существует различных способов выбрать k учеников из двенадцати (таблицу составлять не будем). Осуществляется выбор без возвращения и без учета порядка, ответ известен — биномиальный коэффициент
.
Складывая эти числа для всевозможных
, получаем ответ:
![C_{12}^{2}+C_{12}^{4}+C_{12}^{6}+C_{12}^{8}+C_{12}^{10} = 2046. C_{12}^{2}+C_{12}^{4}+C_{12}^{6}+C_{12}^{8}+C_{12}^{10} = 2046.](https://tex.z-dn.net/?f=C_%7B12%7D%5E%7B2%7D%2BC_%7B12%7D%5E%7B4%7D%2BC_%7B12%7D%5E%7B6%7D%2BC_%7B12%7D%5E%7B8%7D%2BC_%7B12%7D%5E%7B10%7D+%3D+2046.)