25. Тут все просто - биссектриса отсекает от параллелограмма равнобедренный треугольник (потому что у него будут равны углы "при основании"), поэтому в данном случае она "как раз попадет" в середину стороны.
26. Тут немного сложнее.
Если из точки B провести BE II AC, то хорды между параллельными будут равны, то есть AB = CE = 19.
Угол DBE = DKC = 60°. Поэтому угол DCE = 120°.
Получился треугольник DCE, у которого известны две стороны DC = 22; CE = 19; и угол между ними ∠DCE = 120°; и надо найти радиус R описанной вокруг этого треугольника окружности.
Для этого сначала надо найти DE;
из теоремы косинусов
DE^2 = 19^2 + 22^2 + 19*22 = 1263;
из теоремы синусов R = DE/√3; отсюда
R = √421;
ну числа не я подбирал :(