Помогите срочно пожалуйста!! решите уравнение: cos2x+5sinx+2=0

0 голосов
41 просмотров

Помогите срочно пожалуйста!!

решите уравнение:
cos2x+5sinx+2=0


Алгебра (128 баллов) | 41 просмотров
Дан 1 ответ
0 голосов

Используя формула двойного угла, преобразуем правую часть уравнения:
cos²x - sin²x +5sinx +2 = 0
Используя тригонометрическую единицу, получим: 1- 2sin²x + 5sinx +2 =0
                                                                                                 - 2sin²x + 5sinx +3 =0
Решим методом введения новой переменной: пусть t=sinx, -1≤t≤1
 -2t² + 5t +3 =0
D = 5² -4 *(-2)*3 = 25 + 24 =49
t= -1/2     или       t = 3 - не удовлетворяет условию.
вернёмся к исходной переменной: sinx = -1/2^(n+1) * π/6 + πn, n∈Z  
                                                          x = (-1)

(4.0k баллов)