Какое наибольшее число острых углов может иметь выпуклый многоугольник с n< или равно 81...

0 голосов
41 просмотров

Какое наибольшее число острых углов может иметь выпуклый многоугольник с n< или равно 81 вершинами


Математика (183 баллов) | 41 просмотров
Дан 1 ответ
0 голосов

Пусть выпуклый n−угольник имеет k острых углов. Тогда сумма его углов меньше k⋅90∘+(n−k)⋅180∘. С другой стороны, сумма углов n-угольника равна (n−2)⋅180∘. Поэтому (n−2)⋅180∘90∘+(n−k)⋅180∘, т.е. k<4</span>. Поскольку k — целое число, k⩽3. Для любого n⩾3 существует выпуклый n-угольник с тремя острыми углами. Пример в общем случае строится аналогично рисунку.

(86 баллов)