За 12 тетрадей и 8 карандашей заплатили 52грн.Сколько стоит 1 тетрадь и1 карандаш,если 7...

0 голосов
74 просмотров

За 12 тетрадей и 8 карандашей заплатили 52грн.Сколько стоит 1 тетрадь и1 карандаш,если 7 тетрадей дороже,чем 4 карандаша,на 13 грн.?


Алгебра (12 баллов) | 74 просмотров
Дано ответов: 2
0 голосов

Обозначим стоимость тетради x, а стоимость карандаша y. Тогда "за 12 тетрадей и 8 карандашей заплатили 52грн" выражаем 12x+8y=52. А " 7 тетрадей дороже,чем 4 карандаша,на 13 грн." 7x-4y=13. Составляем систему из этих уравнений. Первое делением на 2 преобразуем в 6x+4y=26. Пользуясь правилом сложения, получаем 13x=39. Значит стоимость тетради x=3. Подставим x во второе уравнение 7*3-4y=13. Получим стоимость карандаша y=2.

(440 баллов)
0 голосов

Пусть x стоимость тетради , y- стоимость карандаша . По условию "за 12 тетрадей и 8 карандашей заплатили 52грн" напишем уравнение 12x+8y=52. И " 7 тетрадей дороже,чем 4 карандаша,на 13 грн." -   7x-4y=13.

Составляем систему из этих уравнений.

Пользуясь правилом методрм сложения решим ее,

получаем 13x=39.

Значит стоимость тетради x=3.

Подставим x во второе уравнение 7*3-4y=13.  y=2 стоимость карандаша 

(433 баллов)