Если сторона основания а, значит диагональ основания равна а√2.
обозначим высоту пирамиды Н.
из условия площадь диагонального сечения пирамиды (Sдиаг) равна площади основания (Sосн).
Sосн=Sдиаг
а²=1/2*а√2*Н
Н=а√2
S полной боковой поверхности= 4*S боковой грани
S бок грани=1/2*а*h
проведем линию от центра основания пирамиды к центру линии основания пирамиды и назовем ее b. b=a/2
b, H и h образуют прямоугольный треугольник
отсюда а²/4+2а²=h²
h=3/2*a
теперь можно найти площадь полной поверхности пирамиды
Sполн=4*Sграни=4*1/2*а*h=4*1/2*a*3/2*a=3a²