Объем конуса равен 128 через точку делящую высоту конуса в отношении 1/3 считая от...

0 голосов
145 просмотров

Объем конуса равен 128 через точку делящую высоту конуса в отношении 1/3 считая от вершины ,проведена плоскость,параллельная основанию.Найдите объем конуса,отсекаемого от данного конуса плоскостью.


Геометрия (20 баллов) | 145 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть ASC - осевое сечение конуса с вершиной в точке S. Точка P - делит высоту сечения SH в отношении 1 к 3. Точка E лежит на стороне SС. Тогда рассмотрим подобные треугольники SPE и SHC:
\frac{SP}{SH} = \frac{PE}{HC} = \frac{SE}{SC} = \frac{1}{4}
PE = 0.25HC, SP = 0.25 SH

Исходный объем конуса равен 128 = 1/3 Sh.
S = πr², новая площадь равна π(1/4²r²) = πr² / 16. Значит площадь уменьшилась в 16 раз.

Высота уменьшилась в 4 раза, значит объем уменьшился в 4 * 16 = 64 раза.
V = 128 / 64 = 2

Ответ: 2

(2.0k баллов)
0

а проще нельзя ?

0

Это и так довольно просто.

0

Не сразу вник