(sin3a-sina)(cos3a-cosa)/(1-cos2a)=
=(sin3acos3a-sin3acosa-sinacos3a+sinacosa)/(1-cos2a)=
=[(1/2*sin6a+1/2*sin2a)-sin(3a+a)]/(1-cos2a)=
=[1/2(sin6a+sin2a)-sin4a]/(1-cos2a)=
=(1/2*2sin4acos2a-sin4a)/(1-cos2a)=(sin4acos2a-sin4a)/(1-cos2a)=
=-sin4a(1-cos2a)/(1-cos2a)=-sin4a
-sin4a=-sin4a