Бассейн наполняется двумя трубами, действующими одновременно , за 2 часа . За сколько часов может наполнить бассейн первая труба , если она , действуя одна , наполняет бассейн на 3 часа быстрее , чем вторая ? Пожалуйста с решением !))
Пусть х часов - то время, за которое может наполнить бассейн первая труба, тогда вторая труба наполняет бассейн за (х+3) часов. За 1 час работы первая труба наполнит 1/х часть бассейна, вторая - 1/(х+3), а обе - 1/х+1/(х+3) или 1/2 бассейна. Составим и решим уравнение: 1/х+1/(х+3)=1/2 |*2x(x+3) 2x+6+2x=x^2+3x x^2+3x-4x-6=0x^2-x-6=0 по теореме Виета: х1=3; х2=-2<0 (не подходит)<br>Ответ: первая труба может наполнить бассейн за 3 часа.
3х+х=2 4х=2 х=2:4 х=0,5(ч)- наполнит 2 труба 3*0.5=1,5(ч)- наполнит 1 труба
не верно
ответ 3