Бассейн наполняется двумя трубами, действующими одновременно , за 2 часа . За сколько...

0 голосов
158 просмотров

Бассейн наполняется двумя трубами, действующими одновременно , за 2 часа . За сколько часов может наполнить бассейн первая труба , если она , действуя одна , наполняет бассейн на 3 часа быстрее , чем вторая ?
Пожалуйста с решением !))


Математика (30 баллов) | 158 просмотров
Дано ответов: 2
0 голосов

Пусть х часов - то время, за которое может наполнить бассейн первая труба, тогда вторая труба наполняет бассейн за (х+3) часов. За 1 час работы первая труба наполнит 1/х часть бассейна, вторая - 1/(х+3), а обе - 1/х+1/(х+3) или 1/2 бассейна. Составим и решим уравнение:
1/х+1/(х+3)=1/2  |*2x(x+3)
2x+6+2x=x^2+3x
x^2+3x-4x-6=0x^2-x-6=0
по теореме Виета:
х1=3; х2=-2<0 (не подходит)<br>Ответ: первая труба может наполнить бассейн за 3 часа.

(214 баллов)
0 голосов

3х+х=2
4х=2
х=2:4
х=0,5(ч)- наполнит 2 труба
3*0.5=1,5(ч)- наполнит 1 труба

(183 баллов)
0

не верно

0

ответ 3