( 1+ctq(2α -3π/2)*ctq(3π/2+α ))/(ctqα + tqα) =sin2α/2cos2α
======================
( 1+ctq(2α -3π/2)*ctq(3π/2+α ))/(ctqα + tqα) =(1+t2α*tqα)/(ctqα+tqα) =
* * *ctq(2α -3π/2) =ctq(-(3π/2-2α)) = -ctq(3π/2-2α) = - tq 2α и ctq(3π/2+α) = - tqα * * *
(1+sin2α/cos2α*sinα/cosα)/(cosα/sinα+sinα/cosα) =
(cos2α*cosα+sin2α*sinα)/(cos2α*cosα)) /(( cos²α+sin²α)/sinα*cosα) =
cosα/(cos2α*cosα) / (1/sinα*cosα) =sinα*cosα/cos2α =sin2α/2cos2α . || (1/2) *tq2α