Дан эллипс 6x2+15y2=90.Найти уравнение гиперболы, вершины которой находятся в фокусах, а...

0 голосов
89 просмотров

Дан эллипс 6x2+15y2=90.Найти уравнение гиперболы, вершины которой находятся в фокусах, а фокусы в вершинах данного эллипса.


Алгебра (31 баллов) | 89 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Если заданное уравнение эллипса разделить на 90, то получим каноническое его уравнение:
(х² / 15) + (у² / 6) = 1.
Тем самым мы определили вершины эллипса:
а = +-√15
в = +-√6.
Теперь находим фокусы: с = √(а² - в²) = √(15 - 6) = √9 = +-3.
Переходим к гиперболе.
Так как у эллипса 4 вершины, а у гиперболы всего 2 фокуса, то возможно 2 варианта расположения ветвей гиперболы в соответствии с заданием:
- 1) симметрично оси у,
- 2) симметрично оси х.
Каноническое уравнение гиперболы: (х² / а²) - (у² / в²) = 1.
Параметр а = +-3, с = +-√15 (для 1 варианта).
Параметр в = √(с² - а²) = √(15 - 9) = √6.
Отсюда получаем один вариант уравнения гиперболы:
(х² / 9) - (у² / 6) = 1.

(309k баллов)