Z ₁= 1 -i = √2(1/√2 - i*1/√2) =√2(cos(-π/4+2π*k) +isin(-π/4+2π*k)) ;
∛z₁ =∛√2(cos(-π/4+2π*k) +isin(-π/4+2π*k)) =(2)^(1/6)*(cos(-π/4+2π*k)/3 +isin(-π/4+2π*k)/3) .
-------------------------------------------------
z₂= -√3 - i = 2(-√3/2 -i1/2) = 2(cos(-π +π/6) + isin(-π +π/6)) =
2(cos(2π*k-(5/6)*π) + isin(2π*k-(5/6)*π)