В треугольнике две высоты равны 12 и 20. Найдите максимальное возможное целое значение...

0 голосов
196 просмотров

В треугольнике две высоты равны 12 и 20. Найдите максимальное возможное целое значение длины третьей высоты.


Геометрия (119 баллов) | 196 просмотров
0

перезагрузи страницу если не видно

Дано ответов: 2
0 голосов

Увы, я поторопился :)))
Было выложено такое решение. 2*S = a*12 = b*20 = c*h;
b = (3/5)*a; минимальное значение c = a - b = (2/5)*a; откуда максимальное значение h = = (5/2)*12 = 30;
но
Это не может быть ответом, потому что при c = a - b; S = 0; и соотношения типа 2*S = a*12 = b*20 теряют смысл.
Однако значение h = 29 может быть реализовано. При этом треугольник будет подобен треугольнику со сторонами 1, 3/5, 12/29; и надо просто так подобрать коэффициент подобия, чтобы высота к стороне, которая соответствует 1, равнялась бы 12. Вычислять этот коэффициент нет смысла, потому что вопрос в задаче - найти максимальное ЦЕЛОЕ значение h, а следующее ЦЕЛОЕ значение - 30.

(69.9k баллов)
0 голосов

  пусть высота равна x, стороны a;b;c
 12a=20b=x*c \\
 \frac{12a}{x} ; \frac{12a}{20} ; a
 По теореме косинусов  
 a^2 + \frac{144*a^2}{400 }- \fac{24*a^2}{20} * cosa = \frac{144*a^2}{x^2}\\
 cosa= \frac{17}{15} - \frac{120}{x^2} 
  
теперь чем острее угол тем больше высота 
 \frac{17}{15} - \frac{120}{x^2}=1\\
 x=30  
 значит  он будет равен 29
  при этом , угол будет примерно равен 7а 

(224k баллов)