В окружность вписан правильный треугольник, и вокруг этой окружности описан правильный...

0 голосов
105 просмотров

В окружность вписан правильный треугольник, и вокруг этой окружности описан правильный треугольник. Найдите отношение прериметров и площадей этих треугольников


Геометрия (15 баллов) | 105 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть а - сторона меньшего треугольника, b - большего, R - радиус окружности.

По теореме синусов a = 2Rsin(60)= Rкорень(3). (Это можно получить сотней способов, без теоремы синусов)

Для большего треугольника R - радиус вписанной окружности. 

(Для правильного треугольника центры вписанной и описанной окружности совпадают с точкой пересечения медиан, и отрезок медианы - любой - от вершины до точки пересечения медиан - это радиус описанной окружности, а от точки пересечения медиан до стороны - это радиус вписанной окружности. Поскольку точка пересечения медиан делит медиану на отрезки в пропорции 2/1, то радиус описанной окружности у правильного треугольника в два раза больше радиуса вписанной окружности)

Поэтому у большего треугольника радиус описанной окружности 2R, и b = 4Rsin(60).

Отсюда b = 2a, так же относятся и периметры, а отношение площадей равно 4.

 

(69.9k баллов)