Доказать что: в равнобедренном треугольнике две медианы равны, две биссектрисы равны....

0 голосов
47 просмотров

Доказать что: в равнобедренном треугольнике две медианы равны, две биссектрисы равны. Пожалуйста!!!!


Геометрия (23 баллов) | 47 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Проведем медианы из углов при основании..Поскольку боковые стороны у равнобедренного треугольника равны, то медианы разделят их на равные части. Рассмотрим два образовавшихся треугольника, состоящих из медианы и основания. Они равны (по двум сторонам и углу между ними) следовательно третьи стороны (медианы) также равны

В равнобедренном треугольнике проведем высоту к основанию. Образуется два равных прямых треугольника.
Проведенные из углов при основании равнобедренного треугольника биссектрисы будут являться биссектрисами и прямоугольных треугольников, так как они равны, то равны и биссектрисы.

(1.8k баллов)
0 голосов

1) ∠BAK = ∠KAC = ∠OCA = ∠OCK, т.к. ∠A = ∠C, и СО и КА — биссектриссы. В ΔAKB и ΔСОВ: АВ = ВС (т.к. ΔАВС — равнобедренный) ∠BAK = ∠BCO (т.к. АК и СО — биссектриссы равных углов). ∠B — общий. Таким образом, ΔAKB = ΔСОВ по 2-му признаку равенства треугольников.

(229 баллов)