AB=√(5+1)²+(8-3)²=√(36+25)=√61≈7,8
BC=√(4-5)²+(0-8)²=√(1+64)=√65≈8,1
AC=√(4+1)²+(0-3)²=√(25+9)=√34≈5,8
cosC=(BC²+AC²-AB²)/2BC*AC=(65+34-61)/2*8,1*5,8=38/96,96≈0,4044
cosB=(AB²+BC²-AC²)/2AB*BC=(61+65-34)/2*7,8*8,1=92/126,36≈0,7281
cosA=(AB²+AC²-BC²)/2AB*AC=(61+34-65)/2*7,8*5,8=30/90,48≈0,3316