В прямой треугольной призме основание - прямоугольный треугольник АВС; угол С=90 град...

0 голосов
30 просмотров

В прямой треугольной призме основание - прямоугольный треугольник АВС; угол С=90 град ;угол А= 60 град; ВС=5см;Н=4см. Найти объем .


Геометрия (25 баллов) | 30 просмотров
Дан 1 ответ
0 голосов

Итак,объем призмы равен площадь основания умножить на высоту. Из формулы нам неизвестна величина площади основания. Находим для начала ее. В основании призмы лежит прямоугольный треугольник. В этом треугольнике угол B будет равен 180-90-60=30 град. (т.к. мы знаем, что сумма углов в треугольнике равна 180 град). Катет, лежащий против угла в 30 градусов равен половине гипотенузы, значит, АС равен 1/2 АВ. Зная теорему Пифагора (квадрат гипотенузы равен сумме квадратов катетов), мы можем составить уравнение: (2x)^2=x^2+5^2, где x- AC.
Решив это уравнение, получим, что x=5/sqrt3. Площадь прямоугольного треугольника будет равна половине произведения катетов, следовательно, будет равна 25/2sqrt3. Теперь, зная площадь основания, мы можем найти объем призмы. Формулу я написала в самом начале. Подставляем в формулу найденные и известные величины и узнаем, что объем будет равен 50/sqrt3

(1.3k баллов)