Помогите(( основания равнобедренной трапеции равны 11 и 23 ,площадь 136 найдите боковую...

0 голосов
66 просмотров

Помогите(( основания равнобедренной трапеции равны 11 и 23 ,площадь 136 найдите боковую сторону


Математика (14 баллов) | 66 просмотров
0

Можете мне?

Дано ответов: 2
0 голосов

A=11;b=23;S=136;с-боковая сторона;
дополнительное построение:из вершин меньшего основания опустить перпендикуляры на большее основание.
S=(a+b)/2·h;⇒h=2S/(a+b);
h=2·136/(11+23)=8;
(b-a)/2=(23-11)/2=6;
По теореме Пифагора:c²=[(b-a)/2]²+h²;⇒
c²=6²+8²=36+64=100;⇒
c=√100=10;

(25.1k баллов)
0 голосов

Дано: Трапеция ABCD. BC = 11, AD = 23. AB = CD. S = 136.

Решение:
1.) Проведем 2 высоты - DH и CT. Они равны, т.к. обе перпендикулярны одной стороне AD. Т.к. трапеция равнобедренная, угл A = углу D. Следовательно, прямоугольные треугольники ABH и CDT равны по катету и острому углу, а след. AH = TD.
2.) AH = TD по доказанному. Т.к. BC = HT, след AH = TD = (23 - 11)/2 = 6
3. ) Площадь трапеции = ((BC + AD)/2 )*h = ((23 + 11)/2)* h = 17*h (h - высота)
4. ) S = 17*h, а по условию S = 136. Составляем уравнение - 136 = 17*h, h = 8
5. ) Рассмотрим прямоугольный треугольник ABH. AH = 6 по доказанному. BH = 8 по доказанному. По теореме Пифагора AB^2 = BH^2 + AH^2. Составим уравнение, где X = AB.    X^2 = 6^2 + 8^2. X^2 = 36 + 64. X^2 = 100. X = 10
Следовательно, боковая сторона трапеции = 10