Если, по условиям задачи, прямая а лежит в плоскости α, то, исходя из определения скрещивающихся прямых - “прямые называются скрещивающимися, если одна из них лежит в плоскости, а другая пересекает эту плоскость в точке, не принадлежащей первой прямой” следует, что:
а) прямая b не может лежать в плоскости α, т.к. она её пересекает (на рис. точка О);
б) прямая b не может быть параллельной плоскости α, поскольку в этом случае не было бы точки пересечения;
в) прямая b может (и должна) пересекать плоскость α, это впрямую следует из определения.
Скачать вложение Adobe Acrobat (PDF)