Решить уравнение: Log_0.25(x+4)=log_0.25(x+7)-1

0 голосов
46 просмотров

Решить уравнение: Log_0.25(x+4)=log_0.25(x+7)-1


Математика (202 баллов) | 46 просмотров
Дан 1 ответ
0 голосов

Решение:1 представим как логарифм с основанием 0.25. Тогда наше уравнение преобразуется в:\log_{0.25}(x+4) = \log_{0.25}(x+7) - \log_{0.25}0.25Применив свойство логарифма:\log_ab - \log_ac = \log_a(\frac{b}{c})к правой части, получится следующее:\log_{0.25}(x+4) = \log_{0.25}(\frac{x+7}{0.25})Раскрыв логарифмы с учетом ОДЗ (x ≥ -4), получим обычное линейное уравнение:x + 4 = \frac{x+7}{0.25} \\ x + 4 = 4x + 28 \\ 3x = -24 \\ x = -8
Корень не входит в область допустимых значений. Следовательно, у этого уравнения корней нет.
Ответ: корней нет.

(5.9k баллов)