Cos^2x-sin^2x-sinx=0

0 голосов
71 просмотров

Cos^2x-sin^2x-sinx=0


Алгебра (28 баллов) | 71 просмотров
0

Здесь нужно свернуть как косинус двойного,тогда получится cos2x-sinx=0,но что делать дальше-не знаю

Дан 1 ответ
0 голосов
Правильный ответ

Решение
Cos²x - sin²x - sinx = 0
1 - sin²x - sin²x - sinx = 0
2sin²x + sinx - 1 = 0
sinx = t
2t² + t - 1 = 0
D = 1 + 4*2*1 = 9
t₁ = (- 1 - 3)/4
t₁ = - 1
t₂ = (- 1 + 3)/4
t₂ = 1/2
1)  sinx = - 1
x₁ = - π/2 + 2πk, k∈Z
2)  sinx = 1/2
x = (-1)^n *arcsin(1/2) + πn, n∈ Z
x₂ =  (-1)^n *(π/6) + πn, n∈ Z

(61.9k баллов)
0

Чёрт,ты прав