Найдите увеличенную в 4 раза сумму корней уравнения (4x+7)^2 · (2x+3)(x+2)=34

0 голосов
40 просмотров

Найдите увеличенную в 4 раза сумму корней уравнения (4x+7)^2 · (2x+3)(x+2)=34


Алгебра (15 баллов) | 40 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

(4x + 7)^2 * (2x + 3)(x + 2) = 34
(16x^2 + 56x + 49) * (2x^2 + 7x + 6) = 34
32x^4 + 112x^3 + 98x^2 + 112x^3 + 392x^2 + 343x + 96x^2 + 336x + 294 = 34
32x^4 + 224x^3 + 586x^2 + 679x + 260 = 0
По теореме Виета для уравнений 4 степени
{ x1 + x2 + x3 + x4 = -b/a = -224/32 = -7
{ x1*x2 + x1*x3 + x1*x4 + x2*x3 + x2*x4 + x3*x4 = c/a = 586/32 = 293/16
{ x1*x2*x3 + x1*x2*x4 + x1*x3*x4 + x2*x3*x4 = -d/a = -679/32
{ x1*x2*x3*x4 = e/a = 260/32 = 65/8
Ответ: -7*4 = -28

Можно решить и более по-школьному
(16x^2 + 56x + 49) * (2x^2 + 7x + 6) = 34
(8(2x^2 + 7x) + 49) * (2x^2 + 7x + 6) = 34
Замена 2x^2 + 7x = y
(8y + 49)*(y + 6) - 34 = 0
8y^2 + 97y + 294 - 34 = 0
8y^2 + 97y + 260 = 0
D = 97^2 - 4*8*260 = 9409 - 8320 = 1089 = 33^2
y1 = (-97 - 33)/16 = -130/16 = -65/8
y2 = (-97 + 33)/16 = -4
Обратная замена
1) 2x^2 + 7x = -65/8
16x^2 + 56x + 65 = 0
D/4 = 28^2 - 16*65 = 784 - 1040 = -256 = (16i)^2 < 0
Действительных решений нет. Комплексные решения
x1 = (-28 - 16i)/16 = -7/4 - i
x2 = (-28 + 16i)/16 = -7/4 + i
2) 2x^2 + 7x = -4
2x^2 + 7x + 4 = 0
D = 7^2 - 4*2*4 = 49 - 32 = 25
x1 = (-7 - 5)/4 = -3
x2 = (-7 + 5)/4 = -1/2
Сумма корней -3 - 1/2 - 7/4 - i - 7/4 + i = -7
Ответ: -7*4 = -28
Но если учитывать только действительные решения, то получается
Сумма корней -3 - 1/2 = -3,5
Ответ: -3,5*4 = -14

(320k баллов)