Помогите, срочно! Корень из 2х+9<3-х

0 голосов
148 просмотров

Помогите, срочно!
Корень из 2х+9<3-х


Алгебра (181 баллов) | 148 просмотров
0

корень из левой части?

0

Да)

Дано ответов: 2
0 голосов
Правильный ответ
\sqrt{2x+9}\ \textless \ 3-x \\ 2x+9\ \textless \ (3-x)^2 \\ 2x+9\ \textless \ 9-6x+x^2 \\ -x^2+8x\ \textless \ 0 \\ D=b^2-4ac=64 \\ x_1_,_2= \frac{-b^+_- \sqrt{D} }{2a} \\ x_1\ \textgreater \ 8 \\ x_2\ \textgreater \ 0
Ответ: х>8
(54.8k баллов)
0 голосов

Нужно возвести в квадрат обе стороны и получим: 
2х+9<(3-х)^2 (избавились от корня, т.к. корень в квадрате равен его подкоренном выражению)<br>Теперь раскроем скобки справа:
2x+9<9-6x+x^2<br>Теперь переносим всё в одну часть: 
-x^2+2x+6x+9-9<0<br>Упрощаем: 
-x^2+8x<0<br>x<0 или 8-x<0<br>               -x<-8<br>                x>8 (т.к. делем на отрицательное число, знак меняем на                            противоположный)
Рисуем числовую прямую и выкалываем две эти точки.
А теперь главный вопрос, а что, собственно, нужно было найти (ты не обозначил/а это в задании). Но в любом случае, решений данное неравенство не имеет. 

(3.0k баллов)