Если касательные пересекаются в точке О, тогда центр окружности обозначим точкой О₁
Касательные АО и ВО, радиусы окружности АО₁ и ВО₁ образовали четырёхугольник АО₁ВО, у которого
<О₁АО = <О₁ВО = 90° (касательные в точке касания всегда перпендикулярны радиусу, проведённому к точке касания).<br>Хорда АВ стягивает дугу АВ, равную 75°, значит центральный угол, который опирается на эту хорду, < АО₁В = 75°
Сумма углов выпуклого четырёхугольника всегда равна 360°. Величины трёх углов знаем, теперь найдём искомый <АОВ<br><АОВ = 360° - (<АО₁В + <ОАО₁ + <ОВО₁)<br><АОВ = 360° - (75° + 90° + 90°) = 360° - 255° = 105°<br>Ответ: <АОВ = 105°