Пожалуйста помоги очень срочно надо)))

0 голосов
19 просмотров

Пожалуйста помоги очень срочно надо)))


Алгебра (32 баллов) | 19 просмотров
Дано ответов: 2
0 голосов
0 голосов
8) \\ \\ 1) \frac{5x+75 x^{2} }{ x^{2} +8} \\ x^{2} +8 \neq 0 \\ x^{2} \neq -8 \\ x\in R \\ \\ 2) \frac{5a-4}{a ^{2} -100} \\ a ^{2} -100 \neq 0 \\ a ^{2} \neq 100 \\ a \neq +-10 \\ a\in (- \infty ;-10) \cup (-10;10) \cup (10;+ \infty ) \\ \\
3) \frac{y ^{4}-81 }{(y ^{3}+6y ^{2} )(y ^{2} -121) } \\ (y ^{3}+6y ^{2} )(y ^{2} -121) \neq 0 \\ y ^{3} +6y ^{2} \neq 0 \\ y^{2} (y+6) \neq 0 \\ y ^{2} \neq 0 \\ y \neq 0 \\ y+6 \neq 0 \\ y \neq -6 \\ y ^{2} -121=0 \\ y ^{2}=121 \\ y=+-11 \\ y\in (- \infty ;-11)\cup (-11;-6) \cup (-6;0) \cup (0;11)\cup \\ \cup(11;+\infty )
4) \frac{b+9}{b ^{2} } \\ b ^{2} \neq 0 \\ b \neq 0 \\ b\in (- \infty ;0)\cup (0;+\infty )
9. \\ \\ 1) \frac{14a ^{4}*10 x^{2} y^{3} }{5xy*21a ^{2} b ^{3} } = \frac{2a ^{2} *2xy ^{2} }{3b ^{3} } = \frac{4a ^{2} xy ^{2} }{3b ^{3} } \\ \\ 2) \frac{25m ^{2} -4n ^{2} }{15mn} * \frac{9m^2}{25m^2+20mn+4n^2} = \\ \\ = \frac{(5m-2n)(5m+2n)*9m^2}{15mn*(5m+2n)^2} = \frac{3m(5m-2n)}{5n(5m+2n)}
3) \frac{3y ^{2} }{ x^{4} -xy ^{3} } + \frac{y}{ x^{3}+ x^{2} y+xy ^{2} } - \frac{1}{ x^{2} -xy} = \frac{3y ^{2} }{x*(x^3-y^3)} + \frac{y}{x( x^{2} +xy+y^2)} - \\ \\ - \frac{1}{x(x-y)} = \frac{3y^2}{x(x-y)( x^{2} +xy+y^2)} + \frac{y}{x( x^{2} +xy+y^2)} - \frac{1}{x(x-y)} = \\ \\ = \frac{3y^2+y(x-y)-1*(x^2+xy+y^2)}{x(x-y)(x^2+xy+y^2)} = \frac{3y^2+xy-y^2-x^2-xy-y^2}{x(x^3-y^3)} = \\ \\ = \frac{y^2+xy-x^2-xy}{x(x^3-y^3)} = \frac{y(y+x)-x(x+y)}{x(x-y)(x^2+xy+y^2)} = = \frac{(y+x)(y-x)}{x(x-y)(x^2+xy+y^2)} = \frac{-(x+y)(x-y)}{x(x-y)(x^2+xy+y^2)} =- \frac{x+y}{x(x^2+xy+y^2)}
4) \frac{x^3+y^3}{x-y}* \frac{x^3-y^3}{x+y} = \frac{(x+y)(x^2+xy+y^2)*(x-y)(x^-xy+y^2)}{(x-y)(x+y)} = \\ \\ =(x^2+xy-y^2)(x^2-xy+y^2)=x^4-x^3y+x^2y^2+\\ +x^3y-x^2y^2+xy^2+x^2y^2-xy^2+y^4=x^4+x^2y^2+y^4
10. \\ \\ 1)( \frac{8}{2a^2-8a} - \frac{3a+32}{a^3-64} ): \frac{a-8}{a^3+4a^2+16a} - \frac{4}{4-a} =1 \\ \\ 1)\frac{8}{2a^2-8a} - \frac{3a+32}{a^3-64}= \frac{8}{2a(a-4)} - \frac{a+32}{(a-4)(a^2+4a+16)} = \\ \\ = \frac{4(a^2+4a+16)-(3a+32)*a}{a(-4)(a^2+4a+16)} = \frac{4a^2+16a+64-3a^2-32a}{a(a-4)(a^2+4a+16)} = \\ \\ = \frac{a^2-16a+64}{a(a-4)(a^2+4a+16)} \\ \\
2) \frac{a^2-16a+64}{a(a-4)(a^2+4a+16)} * \frac{a(a^2+4a+16)}{(a-8)} = \frac{(a-8)^2*a(a^2+4a+16)}{a(a-4)(a^2+4a+16)(a-8)} = \\ \\ = \frac{a-8}{a-4} \\ \\ 3) \frac{a-8}{a-4} - \frac{4}{4-a} = \frac{a-8}{a-4} + \frac{4}{a-4} = \frac{a-8+4}{a-4} = \frac{a-4}{a-4} =1
2) \frac{x^3+y^3}{x+y} :(x^2-y^2)+ \frac{2y}{x+y} - \frac{xy}{x^2-y^2} =1 \\ \\ 1) \frac{x^3+y^3}{x+y} :(x^2-y^2)= \frac{(x+y)(x^2+xy+y^2)}{(x+y)(x+y)(x-y)} = \frac{ x^{2} +xy+y^2}{(x+y)(x-y)} \\ \\ 2) \frac{2y}{x+y} - \frac{xy}{( x^{2} -y ^{2} )} = \frac{2y}{x+y} - \frac{xy}{(x-y)(x+y)} = \frac{2y(x-y)-xy}{(x-y)(x+y)} = \\ \\ =\frac{2xy-2y^2-xy}{(x-y)(x+y)} \\ \\ 3) \frac{ x^{2} +xy+y^2+2xy-2y^2-xy}{(x-y)(x+y)} = \frac{ x^{2} -y^2}{ x^{2} -y^2} =1


(40.4k баллов)