-6 ≤ x²+x < 2
x²+x+6 ≥0 и x²+x-2 <0 <br>
1) x²+x+6≥0
D=1²-4*1*6=1-24=-23<0<br>нет точек пересечения с осью Ох
вся парабола расположена выше оси Ох, т.к. ветви ей направлены вверх
(коэффициент при х² равен 1, т.е. больше нуля)
Следовательно, при любом х значения функции положительны
ответ: х∈(-∞;0)∨(0;+∞)
2) x²+x-2 <0<br> D=1²-4*1*(-2)=1+8=9=3²
x(1)=(-1+3)/2=2/2=1 x(2)=(-1-3)/2=-4/2=-2
x²+x-2=(x-1)(x+2)
(x-1)(x+2) <0<br> + - +
_________ _________________ __________________
-2 1
ответ: х∈(-2;1)
{х∈(-∞;0)∨(0;+∞)
{х∈(-2;1) => x∈(-2;0)∨(0;1)