1) Допустим, что число √3 рациональное и равно несократимой дроби m/n.
Тогда (m/n)^2 = m^2/n^2 = 3, то есть квадрат этой дроби делится на 3.
Напишем так: m^2 = 3n^2. Значит, m^2 делится на 3, то есть m делится на 3.
Тогда m^2 делится на 9. Значит, n^2 тоже делится на 3.
Значит, n делится на 3, тогда n^2 делится на 9?
Но тогда получается, что дробь m/n можно сократить на 3.
А по условию дробь несократима. Получаем противоречие.
Значит, число √3 не может быть рациональным. Оно иррациональное.
Точно также доказывается, что корень кубический из 2 иррационален.
Только мы возводим в куб и проверяем делимость на 2.
m^3 = 2n^3
Отсюда m и n оба четные, а такого не может быть.
Поэтому число корень кубический из 2 тоже иррациональное.